
15-418 Final Project Report

William Qian, Joseph Gnehm

December 10, 2019

1 Project URL

The url for our project is https://geejoseph.github.io/qian-gnehm/, our code is hosted at
https://github.com/geejoseph/qian-gnehm.

2 Summary

For our Final Project, we decided to conduct an exploration into parallelizing image segmentation.
More specifically, we analyzed the graph-based reduction sweep image segmentation technique
described by Farias, Marroquim and Clua in (Farias 2013). Our project involved building the
codebase from scratch, including a sequential version, several iterations in CUDA for the GPU,
and an OpenMP implementation, geared towards the GHC machines. Our analysis suggests mod-
erate speedup gains with both parallel implementations, where the speedups improve (or stabilize)
as the size of an image increases. We do however note some drawbacks to our parallelization
techniques, including synchronization burdens as well as moderate hyperparameter tuning which
may potentially limit further parallelization attempts as well as reduce the generalizability of the
implementations.

3 Background

Image segmentation is the process of splitting an image into its distinct components. Used primarily
for a variety of computer vision tasks, such as medical imaging or object recognition, many flavors
of image segmentation are widely available. The class of graph based algorithms, represents the

Figure 1: Hamerschlag and Image Segmented Hamerschlag!

1

https://geejoseph.github.io/qian-gnehm/
https://github.com/geejoseph/qian-gnehm


Figure 2: Top: One pass of reduction Sweep, red outline indicates region, white are pixels. Bot:
Process Merging two Regions, arrows show all comparisons/merges that need to be done, we sweep
by doing all rows first, for all regions, and then all diagonals

image as a graph, and creates segments based of how the edges are defined. One very popular
algorithm, reduces image segmentation to determining the minimum spanning tree, and is often
solved using parallelized Boruvka’s algorithm. We instead focus on another technique, coined the
reduction-sweep algorithm, that enables very interesting parallel opportunities.

The reduction sweep algorithm represents every pixel as a node, and is connected to every
neighboring pixel with an edge. The edge value represents the euclidean distance between the two
pixel RGB values, and if the distance is sufficiently small, we can go ahead and merge the two
pixels. Instead of explicitly combining the vertices, we instead keep track of which segment every
vertex belongs to, where initially, every pixel belongs to its own segment. When we merge, we
assign the new cumulative segment the weighted average of the two segment’s RGB values, where
the initial larger segment represents the new merged segment.

Note that this particular interpretation leads to some potential avenues of parallelization. In-
tuitively, two segments that are very far away from one another should be able to be computed
simultaneously. We formalize this intuition through our reduction sweep. We describe it as follows:
We do a series of passes on the image, where we eventually reduce the entire image into one region,
where a regions partition up the pixels and implies that the pixels within it have all been compared
and sufficiently merged. Every phase doubles the width and height of the region, and so we would
have 1 by 1, then 2 by 2, 4 y 4 and so on. During each reduction phase, we would effectively
combine 4 quadrants to generate the new regions, were each quadrant is merged by joining on the
edge pixels of every quadrant. The process of combining the the quadrants, across rows, cols and
diagonals is known as the ‘sweeping’, and the order of sweeping produces different segmentations
but does not introduce concurrency bugs. It should be noted however, during a merge of pairwise
quadrants, only 1 thread can touch that pair, as every pixel in the quadrants are susceptible to

2



multiple reads/writes. Finally, we should note that this algorithm was introduced by the reduction
sweep image segmentation paper referred to below.

For our project, we have broken down image segmentation to several phases. First, we apply a
gaussian blur with a sigma value of 0.8 in order to smooth out the image for processing. We then
apply our reduction sweep algorithm to find the segments, and finally update the pixels to reflect
their new color. For us, we are interested in looking at the speedup of the reduction sweep phase
in particular. We note that updating the pixel colors is inherently tied to the data structures used
within reduction-sweep, and so we include it in the parallel speedup.

An interesting part of this project is the actual quality and difference between the results
produced by different algorithms. The algorithm in the paper produces noticeably more “square”
regions and ours does also. We ignore the final step the authors take in merging regions that are
too small size-wise because this is similar to a reduction sweep but completely sequential. This
seems to be the main purpose behind gaussian blurring and the post-processing step too. Neither
one of these steps is parallelized in the paper.

We now present both our CUDA and OpenMP implementations.

4 Approach

4.1 Sequential

Before describing the specific parallel approaches, we will first formalize some of the Background
information. In particular, we use three primary datastructures. First, we have a Pixels datastruc-
ture, which holds the RGB information for each pixel. Then we have a next datastructure, which is
a union find like datastructure that contains pointers to other pixel indexes that eventually reaches
the ”leader” pixel which represents the segment. Note that leader pixels are distinguished as they
point to themselves. Finally, we also have a size datastructure that stores the size of the segments
at the leader pixels index.

The sequential version was heavily inspired by the algorithm presented in the reference paper.
In particular, upon testing some of the other sweep orders, we determined that row, rowDiagonal,
col and colDiagonal sweep order provides the best image segmentation, and performance changes
across the different orders were negligible. The following parallel implementations were constructed
based off of our own judgement however.

4.2 CUDA

As the subsection suggests, we’ve provided cuda implementation, targeting the GHC machines.
We ultimately constructed three attempts at a CUDA solution, each one trying to address some
of the particular downsides of the previous iteration. Our first implementation, we attempt a
direct, naive translation from the sequential version to a data parallel one. This was met with
several challenges. First, the sequential implementation used 2D vector arrays for the pixel,next
and size datastructure. To simplify the CUDA implementation, we opted to use 1D arrays and
thus refactored the sequential implementation to maintain consistency for comparison. The main
challenge of the naive implementation, is the natural complexity of the reduce sweep function. In
particular, every sweep attempt (ie row sweep,col sweep, diagonal sweeps) required different grid
and block Dimensions. Every block would look after a square of pixels, in particular, we initially
set every block to lock after 16 by 16 squares of pixels, partitioning the image, until the region
values exceed these values at which point we use the region dimensions as our block size. On the
other hand, the number of threads in a block is dictated by the number of threads that can act

3



independently in the block itself. As an example, given the 16 by 16 block with a bunch of 1 by
1 regions and sweeping by row, the number of threads would be 16 * 8, where every even column
would be able to act independently. In contrast if we had 2 by 2 regions, then we would only
have 8 * 4 threads, since all every thread must handle all row edges in its region, so it must do
2 comparisons. This implementation makes sure that every thread we spawn will do meaningful
work. Aside from the constant resizing of the parameters, after every sweep we must make sure to
synchronize the function calls, to avoid any potential races. In regards to updating the pixels, we
can easily do so, by letting every pixel simultaneously access the next array, until it finds the leader.
We do a small optimization where once we find the leader, we automatically point the initial pointer
to the leader, to reduce the chain we would need to traverse. We did experiment with potentially
updating the entire chain for every search in next, but quickly realized that the chain length is
upper bounded by O(logn) where n is number of pixels, and so the added complexity was not
worth the work of reducing the entire chain. Since updating the pixel values was embarrassingly
parallel, we simply kept it throughout our CUDA attempts.

During the naive implementation, we quickly made the observation that within a block, the
threads would only interact with datastructure indices that were within the block. As a result,
seeing how shared memory provided good speedup gains in assignment 2, we decided to try to
integrate shared memory into our solution. With this idea, we now split our CUDA solution in
two. The first part utilizes the shared memory, effectively, calculating the regions until it reaches
64 by 64, and the second phase is identical to the first attempt, except we start the region size of at
64 by 64. There were some unique challenges with shared memory, namely that in the first phase,
we now have 32 by 32 blocks, with 1024 threads a piece. Each thread is responsible for grabbing
some value from the datastructures, and putting it into shared memory. In order to correctly put
them into shared memory, we also need a special mapping from the original datastructures, to
the shared memory datastructure, which can be calculated by the blockIds and ThreadIds (note
this will be important later). For the reduce-sweep phase wrt to the shared memory section, the
implementation is similar to the first attempt, except as the regions start growing bigger, more
and more threads begin to sit idle while very few do work. As will be seen, the results of this
implementation were mixed.

Finally, we further optimized our solution, by taking direct inspiration from the sequential
version. More specifically, this solution is equivalent to the first attempt, except as the region
grows increasingly large, we instead calculate these iterations with the sequential solution code.
The intuition is that, rather than having the overhead of calculating the new dimensions and
spinning up the threads, running it sequential could potentially be faster. However, instead of
mindlessly copying from kernel memory to host memory in order to run the sequential version, we
instead spin up a kernel function with 1 block and 1 thread, that executes the sequential code, thus
reducing the copying overhead.

Note that we also considered some other smaller optimizations, such has having a transposed
version of the datastructure, so that when we try to access down the original column, it becomes
cacheable, but eventually rejected the idea, because of the overhead of having to copy over the
data, and maintain it.

4.3 OpenMP

The basic approach with OpenMP was to start with the sequential code and then make it as
amenable as possible to OpenMP. The first question was what to parallelize, since the authors of
the paper we started with do not actually explain what they do for parallelization. Eventually
we figured out that the columns and rows of the sweeps can be done in parallel, since they af-

4



fect the same regions. Somewhat counter-intuitively, it is the columns of the horizontal sweeps
(and first diagonal sweeps) and the rows of the vertical sweeps (and second diagonal sweeps) that
can be parallelized. If you do it the other way, the image is not correct and there are race con-
ditions. Incidentally, we figured this out the hard way. This is because we have to respect the
potential region boundaries when parallelizing, if a thread touches a region at all then it has to
be the only thread that touches that region in the sweep. Here is a helpful figure from the pa-
per with an annotated version side by side. The annotated version shows each thread as a blue line.

From then we had to modify the code so that the sweeps were done as these rows or columns
and not in their original order. It also became clear that like with the CUDA implementation,
eventually the last iterations would become more expensive since they are just one or two columns.
We expected that playing with the scheduling in OpenMP might be able to give us a good speedup,
with threads taking multiple columns or dividing them up. It was also encouraging that this
algorithm already divides the image up into columns and rows - so hopefully the workload would
be pretty even across threads.

We made sure with this implementation that through all the changes the images produced were
exactly the same, so this implementation wasn’t cheating in any way. We verified that OpenMP
was using all the threads available to it (even by default). We were not sure whether to expect that
the last two sweeps in each iteration would be much faster, since they were working horizontally
in memory and may be able to use the cache better. We did not expect that the iterations would
be unbalanced between sweeps, since they are very similar and our images are not biased in any
particular direction (e.g. all images of trees with the segments being vertical).

As we will see in results, the total number of iterations very closely tracks the log of the largest
dimension of the image. So the first few iterations are very important.

5



5 Results

The sequential code was run on a 3.2 GHz Intel Core i7 Processor, while the CUDA code was run
on an Nvidia GeForce GTX 1080 GPU. The OpenMP code took advantage of 8 of the cores used
by the sequential version, since the GHC machines have eight 3.2 GHz Intel Core i7 processors.
These machines also have x2 hyperthreading so a total of 16 threads (see specs here).

5.1 CUDA

In order to determine performance, we timed the execution of reduce sweep plus pixel update with
the sequential version and parallel version, except we excluding the malloc and copying overhead
for the parallel version when looking at speedup directly. We do however consider this overhead
later on. In order to gain a better look at the internals, we also measure the time for every reduce
phase iteration, shared memory phase execution time, and sequential code execution time for the
third attempt in order to draw comparisons between sequential version, and the multiple CUDA
implementations.

We tested on a images with varying dimensions, ranging from 348px by 420px to 5400px by
2700px.

Below shows the speedup of the naive cuda approach compared to sequential approach on images
of varying size. As can be seen, the speedups differ drastically, from around 4x on our smallest
images to around 17x on the largest one. We considered this speedup satisfactory, particularly the
15x speedups and believe it aligns with the nature of our algorithm. By design, the early reduction
phases contain very small region sizes, which implies that each independent thread is required to
do less work overall, and there exists more opportunity for independent threads as there are more
regions overall. The effect of parallelization is amplified with larger images rather than smaller
ones, as more work is needed in these earlier reduction phases as the image simply requires more
partitioning into blocks, and so parallelization can be easily abused. However, as the reduction

6

https://ark.intel.com/content/www/us/en/ark/products/92985/intel-xeon-processor-e5-1660-v4-20m-cache-3-20-ghz.html


phase iterations get higher, there is less opportunity to have independent threads working, and
each thread will need to do substantially more work, since the regions are naturally larger. Finally,
another factor that limits the parallel speedup, is the necessity of having barriers between sweep
phases in order to maintain correctness. The existence of synchronization objects inherently creates
overhead, but it is speculated not to be a major bottleneck in our case. The primary reason for
this is because since our every thread in our solution is given meaningful work, and all regions are
the same size, every thread has approximately the same amount of work. Therefore work seems to
be distributed relatively evenly and so the barriers simply exist as reinforcement rather than large
overhead.

Moving on to the shared memory approach. It was surprising to see it perform so poorly. Our
figure describes the execution time for the shared memory section, which covers reduction-sweeps
from 1 by 1 to 32 by 32 using shared memory, compared to the total execution of the naive solution
on reduction sweeps from 1 by 1 to 32 by 32. As the size of the image dimensions increase, the shared
memory overhead increases substantially faster then the naive solutions execution. After analyzing
the work load of the shared memory phase, we note that the primary differences between the two
implementations are the need to load and unload the shared memory and a mapping is required
to correctly point the shared memory to the actual memory’s location. We empirically tested, and
determined that the actual load and unloading of the shared memory contributes approximately
1 ms of overhead at most. As a result we look at the mapping. We determine that the mapping
involves modulus and division operations, both which are relatively arithmetic intensive. We also
note that this mapping is called in tandem with our find function, which gets constantly called by
our interface. With these two points in mind, it seems reasonable that the potential performance
gains of shared memory if overshadowed by the necessary mapping that maintains its correctness.

Above is a figure of the iteration times of the sequential version compared to the naive parallel
solution for an image. Note that this behaviour was similar across all our tested images. As
mentioned earlier, the initial iterations are extremely expensive for the sequential version, and

7



extremely cheap for the Cuda version. However, we also see the reverse behaviour emerge in the
later iterations. This can be attributed to the fact that the overhead of maintaining the parallel
solution exceeds the perceived benefit of parallelization. We hoped to decrease the tail iterations
by introducing our pseudo hybrid solution. To some extent, the solution managed to reduce the
overall runtime as shown in the graph. The serial execution of the last couple iterations are less
than the Naive solution across the board. The only issue is that it requires some hyperparamater
tuning for when to start serializing execution, which could be somewhat arbitrary.

Overall, we found Cuda to be moderately successful, the high speedups provided for large image

8



is a potential draw to the approach, while it is difficult to increase speedup on lower images by the
nature of the algorithm. It should be noted however, that the cuda mallocing and copying appear
to have a relatively large overhead, which is something to consider when running the entire image
segmentation pipeline.

5.2 OpenMP

Our main results with OpenMP are an at least 4x speedup. It seems as though as the images get
even larger, we may get a higher asymptotic speedup going to about 6x, however we decided to
focus by optimizing on the smaller images because they run much faster and we had a problem
running even the largest image in this case. But the algorithm should continue scaling. The highest
speedup we can expect here is 8x because we have 8 processors and there isn’t a lot of empty time
while running each row or col, so we don’t expect the hyperthreading to help too much. But because
of overhead it seems reasonable that the curve is this gentle. For OpenMP we took timings from 11
images of various sizes and compositions. Here are graphs for the times of both and overall speedup:

9



Looking more closely, the two big components are the sweep time and the update time. The
sweep time is what we are focusing on with the algorithm. We see a good speedup here:

This shows even reaching a 5x speedup with the largest image. It was also interesting to see
how the total time each iteration took tailed off in both the sequential and parallel cases.

10



We can see the sequential (left) and parallel (right) are very similar, having the same number
of total iterations, but the time of the parallel iterations decreases more quickly at the beginning.
However like with CUDA we get a significant bump at the end with parallel because of the overhead.

Trying to control number of threads didn’t help, it was best just to let OpenMP always use all
the threads. This makes sense since all the sweeps are synchronized between themselves.

One surprise to use was that more in-depth scheduling strategies did not help much. The
basic dynamic strategy with chunk sizes of 1 worked very well, it was basically the same as the
static strategy. We attempted to use the dynamic strategy with larger chunks or chunks inversely
proportional to the number of threads, but this did not help, it seemed to just add overhead. Using
the guided strategy was even worse, probably for the same reason. This is interesting because the
authors reported that they thought the random nature of the finds in the code would unbalance
the tasks. But perhaps having a whole column or row evened this out.

It also did not seem like there was one kind of sweep that was very inefficient or thrashing the
cache. It seems to take much less time than the other sweeps. To check this we looked at the
second iteration of the algorithm for all the pictures. We used the second iteration because the first
iteration doesn’t have the first diagonal sweep. This also should show the benefits or drawbacks of
any caching that will happen in the rest of the iterations. But, to our surprise, the first diagonal
sweep still seems to take very little (even constant-seeming) time. This could be because it has to
check fewer regions or is redundant. It could also be a bug, but we have checked it against the

11



pseudocode from the paper, and there don’t seem to be any obvious discrepancies in the image.
We thought it could be that the first sweep loads a bunch of the pixels into the cache or prepares
them, but the first diagonal sweep continues to take a very short time. It does help a little, but
not much. Swapping the rows or columns, although creating an incorrect image and lots of race
conditions, also actually made the program go slower. So this more solidly cements our choice.

The update part of the time was a good control, because it showed normal scaling and what
you would expect from the theoretical speedup, since it has no strange dependencies, it just tries
to update every pixel in the image. We can see it here:

There may still be more to explore with this OpenMP implementation. In particular, it is possible
to parallelize even further into the rows and cols, since there are parts that exclusively cover some
regions. Since the chunking seemed to work best with a chunk size of 1, this more fine-grained paral-
lelism may be very promising. To do this we would have to rewrite the algorithm to parallelize over
these “region areas”. We also did not do much hyperparameter tuning with OpenMP in the inter-

12



ests of keeping the results we got general. This seemed to work well, but it may also be interesting to
investigate changing the value of t, or how similar the color of two regions has to be to merge them.

For further analysis, it may be helpful to look at the total time used by the threads during the
sweeps using the clock function.

5.3 Possible ways forward

We may be able to try different data structures, although the find structure seemed to be very
helpful in this case we never measured how much time it actually saved.

In general, there are three assumptions we could relax going forward to potentially get a much
higher speedup.

For the purposes of image segmentation to be used in the real world, it may be helpful to trade
off speed for accuracy. So we could not verify all the edges in the image, potentially making some
regions smaller, but also not having to cover all the pixels.

We could also stop assuming determinism, and maybe using basic locks allow the threads to
interact, or allow the first thread to merge two regions. This could let us parallelize more widely
across rows or columns, although the output image would differ each time.

Finally, it may also help if we could use just a little bit of prior knowledge to help with scheduling.
Then we may be able to assign more threads to certain areas of the picture in advance, so that they
are balanced. This may be even more important if we were to try testing out much larger images,
where it seems like we would get the speedup we want.

6 References

Farias, Ricardo & Marroquim, Ricardo & Clua, Esteban. (2013). Parallel Image Segmentation
Using Reduction-Sweeps on Multicore Processors and GPUs. Brazilian Symposium of Computer
Graphic and Image Processing. 139-146. 10.1109/SIBGRAPI.2013.28.
https://www.cs.cmu.edu/~418/doc/openmp.pdf

http://www.cs.cmu.edu/~418/lectures/05_progperf1.pdf

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

https://gcc.gnu.org/onlinedocs/libgomp/Runtime-Library-Routines.html

http://www.cs.cmu.edu/~418/assignment_writeups/asst3/assignment3-f19.pdf

7 List of work and distribution of total credit

Sequential implementation: 80% William Qian, 20% Joseph Gnehm
CUDA implementation: William Qian
OpenMP implementation: Joseph Gnehm

13

https://www.cs.cmu.edu/~418/doc/openmp.pdf
http://www.cs.cmu.edu/~418/lectures/05_progperf1.pdf
http://jakascorner.com/blog/2016/06/omp-for-scheduling.html
https://gcc.gnu.org/onlinedocs/libgomp/Runtime-Library-Routines.html
http://www.cs.cmu.edu/~418/assignment_writeups/asst3/assignment3-f19.pdf

	Project URL
	Summary
	Background
	Approach
	Sequential
	CUDA
	OpenMP

	Results
	CUDA
	OpenMP
	Possible ways forward

	References
	List of work and distribution of total credit

